
Under Construction:
TRuleBase Component
by Bob Swart

Last month, we built a first ver-
sion of a limited inference

engine, based on TFact and TRule
classes and the forward and back-
ward chaining algorithms. This
time, we’re going to expand these
to true TFactBase and TRuleBase
components, including some de-
sign time supporting property
editors and component editors.

Facts
We designed the TFact object to
work with facts that could have
three values: Yes, No or Unknown.
This is of course a limitation when
reasoning, since we often need in-
formation which is expressed in
other ways, such as the date of
birth or gender of a person. These
are important knowledge issues
when it comes to life insurance, for
example, where generally females
live longer than males.

Therefore, the definition of
TValue would need to change from
a finite set of possible answers to,
for example, a simple ShortString.
Anything, including numerical in-
formation (such as income and
debts, when it comes to credit as-
sessment) can be stored in strings.
Note that even Delphi’s own data-
base components seem to feel that
way, since TFields almost all have
an AsString property (except for
big fields, such as BLOBs or
Memos). This yields the modified
TFact class shown in Listing 1.

TFactBase
One fact is seldom enough when
reasoning. We often need an entire
database of facts, called a factbase.
While it would be unwise to have a
component for every fact in the
database, it might be helpful to
have a component that encapsu-
lates the entire factbase: the
TFactBase component.

First of all, we need to consider
the ever recurring question of

inheritance versus delegation. The
facts are stored in a table, so we
need a TTable component. But do
we derive from this component in
order to create our TFactBase com-
ponent (inheritance), or do we sim-
ply use a TTable (as a field or
property) in our new component
TFactBase (delegation)? In this
case, as in many others in fact, I
prefer the delegation model over
the inheritance model. Besides,
when just using a TTable, we won’t
need to try to hide its properties in
the Object Inspector from the
(design time) user. See Listing 2.

Since we’re using a delegation
model, the constructor must cre-
ate the FactTable field of type
TTable. We cannot open the table,
of course, since we don’t know the
DatabaseName and TableName proper-
ties. These are derived from the
FactBase filename property.

The destructor is used to close
the FactTable (if it was open),
which also cleans up the Fact
classes that were used. Then the
FactTable itself is freed, followed
by the inherited Destroy. This way,
we’re sure not to leak any memory
(and we can always use MemMonD

Type
 TFactBase = class(TComponent)
 private
 FActive: Boolean;
 FFactBase: TFileName;
 FNumFact: Integer;
 protected
 FactTable: TTable;
 Facts: Array[0..MaxFact] of TFact;
 protected
 procedure SetFactBase(NewFactBase: TFileName);
 procedure SetActive(NewActive: Boolean);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 public
 procedure Open; virtual;
 procedure Close; virtual;
 public
 procedure NewFactBase;
 procedure Reset;
 published
 property Active: Boolean read FActive write SetActive;
 property FactBase: TFileName read FFactBase write SetFactBase;
 property NumFact: Integer read FNumFact;
 end {TFactBase};

➤ Listing 2

Type
{$IFNDEF WIN32}
 ShortString = String;
{$ENDIF}
 TValue = ShortString;
 TFact = class(TObject)
 private
 FFact: Integer;
 FGoal: Boolean;
 FName: TName32;
 FValue: TValue;
 FQuestion: ShortString;
 protected
 constructor Create(Table: TTable); virtual;
 public
 property Fact: Integer read FFact;
 property Goal: Boolean read FGoal;
 property Name: TName32 read FName;
 property Value: TValue read FValue write FValue;
 property Question: ShortString read FQuestion;
 end {TFact};

➤ Listing 1

22 The Delphi Magazine Issue 17

or Memory Sleuth to check, re-
member?). See Listing 3.

The FactBase property is a fully
qualified filename, which must
be dissected into a path (Dat-
abaseName) and filename (Table-
Name) for the hidden FactTable field.
This is done in the method Set-
FactBase, which first needs to close
the dataset. And since we don’t
want to close the dataset unneces-
sarily, we check to see whether or
not the NewFactBase is different to
FFactBase. See Listing 4.

Much like a regular TTable, we
can set the Active property of
TFactBase to True, which means
that Facts are allocated and read
from the FactTable into memory
and we’re ready to do something
with them (like reasoning, which
comes next). We can also set
the Active property to False, de-
activating the FactBase, which
means closing the FactTable and
freeing the Fact classes that were
allocated earlier.

Note that this is basically the
code which we used in the init-
ialization section of the Facts unit
last month. Only now we’ve really
encapsulated it into a component,
so we can use multiple factbases.

There is one special case which
we must take care of: loading a
TFactBase from a stream file where
the Active property is set to True.
Since the properties are read in
alphabetical order, the Active
property is read before the
FactBase property (containing the
DatabaseName and TableName prop-
erty values combined), which re-
sults in an exception when trying to
open the FactTable without a valid
DatabaseName and TableName (they
are still blank). There are two ways
to avoid the exception. The first
would be to give the FactBase prop-
erty a name which comes before
the Active property. The other pos-
sible solution is simply to ignore
the Active property when reading
the component and leave it set to
False. We can do that by looking at
ComponentState and checking if
csReading is in this set. If so, then
we do nothing and so leave the
Active property False. This is not
exactly how a TTable works, but it’s
enough functionality for now (we

can always set the Active property
to True in the OnCreate event of our
form). See Listing 5.

Again, like the TTable compo-
nent, we can assign a value to the
Active property of our TFactBase

procedure TFactBase.NewFactBase;
begin
 with FactTable do begin
 Active := False;
 TableType := ttParadox;
 TableName := FFactBase;
 with FieldDefs do begin
 Clear;
 Add(’Fact’, ftInteger, 0, TRUE);
 Add(’Goal’, ftBoolean, 0, TRUE);
 Add(’Name’, ftString, 32, TRUE);
 Add(’Question’, ftString, 255, FALSE)
 end;
 with IndexDefs do begin
 Clear;
 Add(’index’, ’Fact’, [ixPrimary,ixUnique])
 end;
 CreateTable
 end
end {CreateFACTS};

➤ Listing 6

constructor TFactBase.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FactTable := TTable.Create(Self)
end {Create};
destructor TFactBase.Destroy;
begin
 Close;
 FactTable.Free;
 FactTable := nil;
 inherited Destroy
end {Destroy};

➤ Listing 3

procedure TFactBase.SetActive(NewActive: Boolean);
var
 i: Integer;
begin
 if not (csReading in ComponentState) then { skip loading }
 if NewActive <> FActive then begin
 if NewActive then begin
 FactTable.Open;
 FactTable.First;
 while not FactTable.Eof do begin
 if FactTable.FieldByName(’Fact’).AsInteger <> FNumFact then
 raise Exception.Create(’Error: facts are not sorted...’);
 Facts[FNumFact] := TFact.Create(FactTable);
 FactTable.Next;
 Inc(FNumFact)
 end;
 FActive := True
 end else begin
 { Close }
 FactTable.Close;
 for i:=0 to Pred(FNumFact) do begin
 Facts[i].Free;
 Facts[i] := nil
 end;
 FNumFact := 0;
 FActive := False
 end
 end
end {SetActive};

➤ Listing 5

procedure TFactBase.SetFactBase(NewFactBase: TFileName);
begin
 if NewFactBase <> FFactBase then begin
 Close;
 FactTable.DataBaseName := ExtractFilePath(NewFactBase);
 FactTable.TableName := ExtractFileName(NewFactBase);
 FFactBase := NewFactBase
 end
end {SetFactBase};

➤ Listing 4

24 The Delphi Magazine Issue 17

component, or use the Open and
Close methods. which merely set
the value of Active. Since both are
assigning values to the compo-
nent’s property (not the private
FActive field), we know for certain
that the SetActive method is called.

Suppose there is no initial
factbase to work with. Trying to
open a factbase would raise an ex-
ception. We need to make sure we
can create a new factbase when
needed, which is why we need the
method NewFactBase (Listing 6).

Finally, in order to perform more
than one session with the same
factbase without having to re-read
it into memory, we need a proce-
dure to reset all fact values to
Unknown: TFactBase.Reset.

These methods give us enough
to start reasoning with facts, which
leads us to the next topic... rules!

Rules
As for facts, we’ve changed the
TValue type from Yes, No, Unknown
to type ShortString for rules. Also,
like facts, we again need to make
sure a TRule is not a class that the
end-user can play with. So, we’ve
made the constructor protected
and moved the properties from
published to public. See Listing 7.

Note the CF property, which
holds the certainty factor. Last
time, we only used values 0 (for a
condition) and 1 (for a conclusion),
but this time we extend that to 0
(for a condition) and some value

between 1 and 100 to indicate the
certainty of the conclusion.

One other thing we need to con-
sider is whether or not we need a
case sensitive or case insensitive
string compare (when comparing
YES to Yes or yes for example). Let’s
deal with this later, and keep things
case sensitive for now.

TRuleBase
One rule is seldom enough when
reasoning. We often need an entire
database of rules, called a rule-
base. And while it would be unwise
to have a component for every rule
in the database, it might be helpful
to have a component that encapsu-
lates the entire rulebase: the
TRuleBase component (Listing 8).

The design is similar to
TFactBase: we’re using delegation
and maintain a field RuleTable of
type TTable which points to the ta-
ble which holds our rules. We need
to create the table in our construc-
tor and free it in our destructor.
This is always the preferred way to
create and free sub-components
that are owned by our big mother
component, which is also called a
SuperComponent (for example by
Mark “Mr.CDK” Miller) because the
component itself consists of sub-
components.

A RuleBase has a FactBase prop-
erty of type TFactBase. Apart from
the question of how we could as-
sign such a value in the Object In-
spector (hint: we need a property
editor), the code is really simple.
We also need a RuleBase filename
property, which works exactly like
the FactBase property of the
TFactBase class: we just dissect the
NewRuleBase into a DatabaseName and
a TableName.

Again, we have a SetActive
method and need to take care of
loading a TFactBase from a stream
file where the Active property is set
to True. The methods Open and
Close set the property Active to
True and False respectively, which
cause the SetActive method to be
called. As for TFactBase we also
need to be able to create a new
empty rulebase by calling the
NewRuleBase method.

Once we’re done with a RuleBase
session we can start again by

Type
 TRule = class(TObject)
 private
 FRule: Integer;
 FCF: SmallInt;
 FFact: Integer;
 FValue: TValue;
 FComments: ShortString;
 protected
 FFired: Boolean;
 constructor Create(Table: TTable); virtual;
 public
 property Rule: Integer read FRule;
 property CF: SmallInt read FCF;
 property Fact: Integer read FFact;
 property Value: TValue read FValue;
 property Fired: Boolean read FFired write FFired;
 property Comments: ShortString read FComments;
 end {TRule};

➤ Listing 7

Type
 TRuleBase = class(TComponent)
 private
 FActive: Boolean;
 FRuleBase: TFileName;
 FFactBase: TFactBase;
 FNumRule: Integer;
 protected
 RuleMax: Integer;
 RuleTable: TTable;
 Rules: Array[0..MaxRule] of TRule;
 protected
 procedure SetFactBase(NewFactBase: TFactBase);
 procedure SetRuleBase(NewRuleBase: TFileName);
 procedure SetActive(NewActive: Boolean);
 protected
 function TestRule(RuleNr: Integer): Boolean;
 procedure FireRule(RuleNr: Integer);
 function Conclude(RuleNr, FactNr: Integer): Boolean;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 public
 procedure Open; virtual;
 procedure Close; virtual;
 public
 procedure NewRuleBase;
 procedure Reset;
 public
 function Forwards: Integer;
 procedure Backwards(Goal: Integer);
 published
 property Active: Boolean read FActive write SetActive;
 property NumRule: Integer read FNumRule;
 property RuleBase: TFileName read FRuleBase write SetRuleBase;
 property FactBase: TFactBase read FFactBase write SetFactBase;
 end {TRuleBase};

➤ Listing 8

January 1997 The Delphi Magazine 25

resetting the rules (make sure none
of them are “fired”, so we can fire
them again when needed). This en-
sures that we can perform many
sessions without having to re-read
the RuleBase, quite similar to the
FactBase component again.

TFactBase and TRuleBase are all
placed in one unit RULEBASE.PAS,
together with the TFact and TRule
classes. This means I can limit com-
munication with the outside world
and strengthen the internal coher-
ence. TFactBase and TRuleBase are
able to get to each others private
parts, while these are shielded
from the outside world. Add the
fact that the constructors of TRule
and TFact have been made pro-
tected and you’ll find that the only
way you can work with rules and
facts is through the TRuleBase and
TFactBase components. But that’s
more the programmer’s interface.
Let’s first take a look at support for
another end-user of these compo-
nents: the run-time designer!

Open Tools API
Delphi offers a Tools API to allow
programmers to extend the func-
tionality of the Delphi IDE itself.
There are four different Tool API
interfaces, for Experts, Version
Control Systems, Component Edi-
tors and Property Editors. They
give us the ability to add to or en-
hance existing IDE features, and
support component usage.

Property Editors
Property editors are extensions of
the Delphi IDE. What does a prop-
erty editor look like? Well, for start-
ers, it is derived from a base class,
TPropertyEditor, from which we
need to override some methods in
order to make things work our way.
A TPropertyEditor edits a property
of a component, or list of compo-
nents, selected in the Object In-
spector. The property editor is
created based on the type of the
property being edited as deter-
mined by the types registered by
RegisterPropertyEditor.

The TPropertyEditor base class
is defined in unit DSGNINTF.PAS
and the methods we need to over-
ride for our purposes here are
GetAttributes, GetValues and Edit.

GetAttributes determines the
kind of property editor and its be-
haviour. There are three kinds of
property editors (other than the
default editbox type): a dropdown
value list, a sub-property list and a
dialog. GetAttributes returns a set
of type TPropertyAttributes:
➣ paValueList: The property edi-

tor can return an enumerated
list of values for the property. If
GetValues calls Proc with values
then this attribute should be
set. This will cause the drop-
down button to appear to the
right of the property in the
Object Inspector.

➣ paSubProperties: The property
editor has sub-properties that
will be displayed indented and
below the current property in
standard outline format. If Get-
Properties will generate prop-
erty objects then this attribute
should be set.

➣ paDialog: Indicates that the
Edit method will bring up a dia-
log. This will cause the ... but-
ton to be displayed to the right
of the property in the Object
Inspector.

➣ paSortList: the Object Inspec-
tor will sort the list returned by
GetValues (by name).

➣ paAutoUpdate: Causes the
SetValue method to be called on
each change made to the editor
instead of after the change has
been approved (eg the Caption
property).

➣ paMultiSelect: Allows the
property to be displayed when
more than one component is se-
lected. Some properties are not
appropriate for multi-selection
(eg the Name property).

➣ paReadOnly: Value is not allow-
ed to change.

GetValue returns the string value of
the property. By default this re-
turns (unknown) and should be
overridden to return the appropri-
ate value. GetValues is called when
paValueList is returned in GetAt-
tributes. It should call the argu-
ment Proc for every value that is
acceptable for this property.

Edit is called when the ... but-
ton is pressed or the property is
double-clicked. This can, for exam-
ple, bring up a dialog to allow the

editing the property in some more
meaningful fashion than by text (eg
the Font property).

TFileName Property Editor
There are two special property
types used by the TFactBase and
TRuleBase components. The first is
the name (and path) of the table
that holds the factbase or rulebase,
which is stored in a property of
type TFileName. Instead of just typ-
ing the entire filename for these
tables, it would be handy to be
provided with a property editor
that shows an OpenDialog instead.
We did something very similar like
this about a year ago for the TUuEn-
code and TUuDecode components
way back in Issue 6 (February
1996), which describes how to
write property editors.

In Issue 6, we saw that while writ-
ing components is essentially a
non-visual task (unless you’re us-
ing one of these nifty Component
Development Kits [Ok, Bob, that’s
enough plugs! Editor]), writing
property editors is no different. We
have to write a new unit by hand in
the editor (see the listing for unit
FileName below). We need to spec-
ify that we want a Dialog type of
property editor, so we return
[paDialog] in the GetAttributes
function. Then we can do as we like
in the Edit procedure, which in this
case involves a TOpenDialog to let us
find any existing file. See Listing 9.

Note that we call the GetName
function of the property editor to
get the name of the actual property
for which we want to fire up the
TOpenDialog. For the TFileName
property called FactBase of the
TFactBase component, this gives us
the dialog shown in Figure 1.

In only a few lines of code we’ve
written a TFileName property editor
that will give great support at de-
sign time for all our components
which use a property of type TFile-
Name. This illustrates that property
editors have an enormous poten-
tial for designers of Delphi compo-
nents and applications.

TFactBase Property Editor
The FactBase property of the TRule-
Base component adds a factbase to
a rulebase. This is like the TTable

26 The Delphi Magazine Issue 17

TDataSource connection: every
datasource (rulebase) must be
connected to a table or query
(factbase). Our connection works
along the same lines.

First, we need to specify that this
property editor consists of a list of
values, returning [paValueList] in
the GetAttributes function. Then,
we need to return the value list
itself, which contains the names of

every component of type TFactBase
which is on the same form.

Basically, we need to walk
through the Components property of
the form, use RTTI to see if they’re
of type TFactBase and if they are call
the Proc method with their name to
add them to the list of names to
pick from. Unnamed components
are not added to the list, of course.
See Listing 10.

Now, it would be really interest-
ing to try to create something simi-
lar to a Data Module for knowledge
bases. A kind of Knowledge Module
where you could put all your
factbases and rulebases. For now,
it’s just an idea, but rest assured,
we’ll get back to the topic of Data
Modules and the like in a future
column...

Component Editors
Component Editors, the topic of
Under Construction in Issue 8 (April
1996), are like property editors, in
that they are used to enhance
Delphi’s IDE. Like property editors,
they are basically derived from a
single base class where some ab-
stract methods need to be overrid-
den and re-defined in order to give
the component editor the desired
behaviour. They are bound to a
particular component type and are
generally executed by a right
mouse button click on the compo-
nent when dropped onto a form.
This way of activation is a bit differ-
ent than property editors, but
other than that, the process of writ-
ing your own component editor is
essentially the same.

A component editor is created
for each component that is se-
lected in the form designer based
on the component’s type (see also
GetComponentEditor and Register-
ComponentEditor in the Delphi
source file DSGNINTF.PAS). When
the component is double-clicked
the Edit method is called. When
the context menu for the compo-
nent is invoked, the GetVerbCount
and GetVerb methods are called to
build the menu. If one of the verbs
are selected ExecuteVerb is called.
Paste is called whenever the com-
ponent is pasted to the clipboard.
You only need to create a compo-
nent editor if you wish to add verbs
to the context menu, change the
default double-click behaviour, or
paste an additional clipboard
format.

The class definition for the base
class TComponentEditor can be
found in DSGNINTF.PAS. There are
six virtual methods which can be
overridden. However, for this col-
umn we only need to focus on the
Edit method, which is called when

➤ Figure 1

Type
 TFileNameProperty = class(TStringProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure Edit; override;
 end;
function TFileNameProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paDialog]
end {GetAttributes};
procedure TFileNameProperty.Edit;
begin
 with TOpenDialog.Create(nil) do
 try
 Title := GetName; { name of property as OpenDialog caption }
 Filename := GetValue;
 Filter := ’DB Files (*.DB)|*.DB’;
 HelpContext := 0;
 Options := Options + [ofShowHelp, ofPathMustExist, ofFileMustExist];
 if Execute then SetValue(Filename)
 finally
 Free
 end
end {Edit};

➤ Listing 9

Type
 TFactBaseProperty = class(TComponentProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure GetValues(Proc: TGetStrProc); override;
 end;
function TFactBaseProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paValueList]
end {GetAttributes};
procedure TFactBaseProperty.GetValues(Proc: TGetStrProc);
var i: Integer;
begin
 with Designer.Form do begin
 for i:=0 to Pred(ComponentCount) do begin
 if (Components[i] is TFactBase) and (Components[i].Name <> ’’) then
 Proc(Components[i].Name)
 end
 end
end {GetValues};

➤ Listing 10

January 1997 The Delphi Magazine 27

the user double-clicks the compo-
nent. The component editor can
bring up a dialog in response to this
method, for example, or some kind
of design expert.

TBaseForm
The TBaseForm is a simple form with
a Table, DataSource, DBGrid and
DBNavigator. It will open the Table
and allow the user to enter new
records, edit them, delete them,
etc – the perfect simple way to al-
low editing of the contents of a
factbase or rulebase. We’ll use this
as a template for the component
editors.

Since we have two components
it’s only logical we should also
write two component editors. They
are very much alike, however, as
we will see shortly.

TFactBaseComponentEditor
This component editor should al-
low us to edit the facts in the
factbase. For this, we need to have
the FactBase filename property
(which is split into the Dat-
abaseName and TableName). The
FactBase does not have to be open,
since this component editor will
work with the hidden table itself
and not the facts loaded in mem-
ory. We only need to override the
Edit method of the TComponentEdi-
tor class, then create and show the
TBaseForm, while making sure the
Table on that form is pointing to the
correct FactBase. See Listing 11.

The Caption is set to remind us
which FactBase we’re editing. See
Figure 2.

Note that we’re editing the
FactBase on disk. So, if we’ve
opened it before, we will have facts
loaded in memory. These are not
automatically updated when we
close the component editor. In fact,
the facts in memory will still be the
old ones. We need to close and
re-open the FactBase to update the
facts in memory. I could’ve made
this an automatic (and invisible)
step, but I can also think of a situ-
ation where you would want to up-
date the facts in the FactBase on
disk while still working (reasoning)
with the current FactBase (for ex-
ample if you don’t want to close the
FactBase and break off the current

reasoning path, but might want to
fix some bug in a fact anyway).

TRuleBaseComponentEditor
A similar thing needs to be done for
the TRuleBase component, for
which we’ll write a TRuleBaseCompo-
nentEditor. Again, we only need to
override the edit method of the
TComponentEditor class (Listing 12).

Using RTTI, we could have writ-
ten just one component editor for
both components. In fact, I have
done so, but I leave the code details
as an exercise for the reader (don’t
be afraid to e-mail me if you can’t
get it to work).

Component Bitmaps
Now we’re almost done with the
design-time look and feel for the
two inference engine components.
All we need are two nice bitmaps
for the factbase and rulebase. This
is where Bolesian comes in again.
Our logo (Figure 3) contains an in-
tegrated question mark (green)
and exclamation mark (blue). This
means something like for every
(client) question, we have an an-
swer. The blue exclamation mark
could also stand for facts (some-
thing we know), while the green
question mark could stand for a
rule (something that needs to be

➤ Figure 2

Type
 TFactBaseComponentEditor = class(TComponentEditor)
 public
 procedure Edit; override;
 end;
procedure TFactBaseComponentEditor.Edit;
begin
 with TBaseForm.Create(nil) do
 try
 Caption := ’FactBase ’+(Component AS TFactBase).FactBase;
 Table1.DataBaseName := (Component AS TFactBase).FactTable.DataBaseName;
 Table1.TableName := (Component AS TFactBase).FactTable.TableName;
 ShowModal
 finally
 Free
 end
end {Edit};

➤ Listing 11

Type
 TRuleBaseComponentEditor = class(TComponentEditor)
 public
 procedure Edit; override;
 end;
procedure TRuleBaseComponentEditor.Edit;
begin
 with TBaseForm.Create(nil) do
 try
 Caption := ’RuleBase ’+(Component AS TRuleBase).RuleBase;
 Table1.DataBaseName := (Component AS TRuleBase).RuleTable.DataBaseName;
 Table1.TableName := (Component AS TRuleBase).RuleTable.TableName;
 ShowModal
 finally
 Free
 end
end {Edit};

➤ Listing 12

28 The Delphi Magazine Issue 17

executed and proven). I decided to
use these as component bitmaps,
for which they have to be 18x18
pixels and in 16 colours. We also
need to give them the resource
names (all uppercase) of the corre-
sponding components: TFACTBASE
for the exclamation mark and
TRULEBASE for the question mark.

Installation
Installing the two components also
consists of installing the two sup-
porting property editors and the
two component editors, which
makes for a relative big Register
procedure. First we register the
two components in one statement
on the Dr.Bob tab of the component
palette. Then, we need to register
the two property editors, which
actually takes three statements
(the TFileNameProperty editor is in-
stalled twice: once for the FactBase
property of a TFactBase and then
for a RuleBase property of a TRule-
Base). When registering a property
editor, we need to supply type
information for the property, the
type of component that has this
property, the name of the property
and finally the type of property
editor itself.

Registering a component editor
is much simpler: we just need two
parameters to a function called
RegisterComponentEditor. The first
is the name (type) of the relevant
component (TDialog in our case),
the second parameter is the type
of the component editor itself
(TDialogEditor). See Listing 13.

Figure 4 shows the two compo-
nents on the component palette in

the Dr.Bob tab. Drop them on a form
and we can test the property edi-
tors (for example to assign
FactBase1 to RuleBase1.FactBase)
and component editors (to fill in
some new facts or rules).

Inference Engine
Last month, we wrote three sup-
porting routines for the forward
and backward chaining algorithms:
TestRule, to see if the conditions of
a rule were satisfied; FireRule, to
fire a rule and add the conclusion
to the fact set; and Conclude, to find
any rule that could be used
to prove a certain fact.

These routines, and forward and
backward chaining itself, were sim-
ple when we only had to worry
about three possible values: Yes
(true), No (false) or Unknown. Now,
when dealing with string values, we
need to check every fact against
the required string value in the
rule. If we use = for this, we get a
case sensitive compare and if we
don’t want this we should make
sure to use the CompareText func-
tion instead (see the online Help).
The three methods TestRule, Fire-
Rule and Conclude are now mem-
bers of TRuleBase and have to be
adjusted to find the Facts using the
FFactBase field of this component.
Furthermore, we’ve modified
TestRule to compare strings in-
stead of just checking for Yes
values. See Listing 14.

The other two routines didn’t
change that much (full source code
is on the disk, of course).

Backward Chaining
Forward chaining essentially re-
mains the same, but we need to
change some parts of the back-
ward chaining algorithm. Last time,
we noted that we could stop inves-
tigating a certain rule as soon as
one of its conditions turned out to
be false. This is no longer the case,
since we no longer simply check for
Yes values (the rulebase still con-
tains only Yes values but this is not
important, since the components
and algorithm are now capable of
checking for any value). We could
modify the question “Are you using
Delphi 1?” to one that would ask for
the specific version of Delphi being
used, in which case 1.x would be a
detailed answer enough. In this
version, though, I’m still using a
simple Yes/No messagebox (but
you’re free of course to extend this
to use a new kind of dialog or form).

What’s more interesting right
now is the fact that we need to
check for the existence of both
the FactBase and RuleBase. Further-
more, both must be Active
(opened), which means the collec-
tion of rules and facts is available
for our inference engine to use.
We’ll just raise an exception if any
of these conditions is false. See
Listing 15.

➤ Figure 3

➤ Figure 4

procedure Register;
begin
 { components }
 RegisterComponents(’Dr.Bob’, [TFactBase, TRuleBase]);
 { property editors }
 RegisterPropertyEditor(TypeInfo(TFileName), TFactBase, ’FactBase’,
 TFileNameProperty);
 RegisterPropertyEditor(TypeInfo(TFileName), TRuleBase, ’RuleBase’,
 TFileNameProperty);
 RegisterPropertyEditor(TypeInfo(TFactBase), TRuleBase, ’FactBase’,
 TFactBaseProperty);
 { component editors }
 RegisterComponentEditor(TFactBase, TFactBaseComponentEditor);
 RegisterComponentEditor(TRuleBase, TRuleBaseComponentEditor)
end;

➤ Listing 13

function TRuleBase.TestRule(RuleNr: Integer): Boolean;
var i: Integer;
begin
 Result := True;
 for i:=0 to Pred(FNumRule) do
 if (Rules[i].Rule = RuleNr) and (Rules[i].CF = 0) then { check }
 Result := Result AND
 (FFactBase.Facts[Rules[i].Fact].Value = Rules[i].Value)
 { NOTE: we need to compare two strings case-insensitive here... }
end {TestRule};

➤ Listing 14

January 1997 The Delphi Magazine 29

Note that the Backwards method
is writing information to the stand-
ard output. This will only work if
you’ve checked the CONSOLE option
for Delphi 2.x applications (or are
using the {$APPTYPE CONSOLE} com-
piler directive), or if you’ve in-
cluded the WinCrt unit in your uses
clause for Delphi 1.x applications.
While they are not a real part of the
communication with the consult-
ing user, I’ve still left them in for
tracing purposes: the output in the
console or WinCRT window will
show you how “deep” the back-
ward chaining algorithm is and
what path the entire consultation
followed. Can be very interesting to
watch (and is helpful when you are
debugging rulebases as well).

Certainty Factors
When dealing with certainty fac-
tors, we need to realise first what it
means to use uncertainty in rule
based systems. Normally, a rule
would conclude something with a
certainty factor of 100% (like IF
your disk is full THEN you don’t have
any space left). However, some-
times a rule can conclude some-
thing with a lesser certainty (like IF
you’re using ImageEditor THEN your
resource file might get corrupt, with
a chance of less than 1%).

Of course, this would also mean
that a fact is no longer certain for
100%, so we need to introduce a

field CF inside the TFact class as
well, which would in turn influence
the certainty of a rule. If a rule says
that if condition A is true then con-
clusion B is a fact with certainty
60%, we need to check the cer-
tainty of condition A as well. If A is
a fact with CF 40%, then we can
derive B, but only with a CF of 40%
* 60% which is 24%. The algorithm
is in fact dealing with certainty fac-
tors as if they were probabilities,
which is one of the ways to treat
uncertainty in rules. Other algo-
rithms, such as the Bayesian ap-
proach, are more complex, and
relate more toward a fuzzy logic
approach (which is a topic that can
wait for another time).

We can conclude by stating that
certainty factors can be imple-
mented by adding a CF field to the
TFact class and enhancing the
FireRule method to calculate a CF
value for every new fact. This
should be enough for now.

Conclusion
Using the TFactBase and TRuleBase
components we can build a knowl-
edge-based application really
quickly. When executing the appli-
cation, we get a console (or
WinCRT) window next to our appli-
cation window with the knowledge
trace information.

We haven’t been able to extend
the facts to include ranges of val-
ues or include an explanation facil-
ity – the so-called “why” function

that explains to the user why (or
how) a certain conclusion has been
reached. These features will be left
as exercises for the reader (hint:
why/how information can be real-
ised using a history of the trace
path). A full-blown version of the
RuleBase unit will be available on
my homepage shortly (see below),
ready to be used with Delphi 1 or
higher, and C++ Builder when it’s
available.

Next Time
We’ve seen enough facts and rules
for a while now. Next time, we’ll get
back to visual component building
and touch on some porting issues
whilst we’re at it. Stay tuned and
don’t forget to make a backup of
your Component Library when-
ever installing something new or
experimental...

Bob Swart (home.pi.net/~drbob/)
is a professional knowledge engi-
neer and technical consultant us-
ing Delphi and C++ for Bolesian
(www.bolesian.com), freelance
author and co-author of The Revo-
lutionary Guide to Delphi 2. He is
co-working on a new book about
Delphi and the internet. In his
spare time, Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space Nine with his 2.5-
year old son Erik Mark Pascal and
his newborn daughter Natasha
Louise Delphine.

procedure TRuleBase.Backwards(Goal: Integer);
Const Depth: Word = 0;
var i,j: Integer;
begin
 if (FFactBase = nil) then
 raise Exception.Create(’no FactBase’);
 if not FFactBase.Active then
 raise Exception.Create(’FactBase not open’);
 if not Active then
 raise Exception.Create(’RuleBase not open’);
 Inc(Depth);
 writeln(’ ’:Depth,Goal);
 i := 0;
 while i <= RuleMax do begin { all rules }
 if Conclude(i,Goal) then begin
 if TestRule(i) then
 FireRule(i)
 else begin { infer or ask }
 j := 0;
 while j < NumRule do begin
 if (Rules[j].Rule = i) and (Rules[j].CF = 0) and
 (FFactBase.Facts[Rules[j].Fact].Value =
 ’unknown’) then begin
 Backwards(Rules[j].Fact); { infer }
 if TestRule(i) then
 j := NumRule
 else begin { ask }
 if FFactBase.Facts[Rules[j].Fact].Question <>
 ’’ then begin
 writeln(’ ’:Depth,
 FFactBase.Facts[Rules[j].Fact].Question);
 if MessageDlg(
 FFactBase.Facts[Rules[j].Fact].Question,

 mtConfirmation, [mbYes,mbNo],0) =
 mrYes then
 FFactBase.Facts[Rules[j].Fact].Value :=
 ’Yes’
 else
 FFactBase.Facts[Rules[j].Fact].Value
 := ’No’
 end;
 if TestRule(i) then
 j := NumRule
 end
 end;
 Inc(j)
 end;
 if TestRule(i) then begin
 FireRule(i);
 i := RuleMax
 end;
 end
 end;
 Inc(i)
 end;
 Dec(Depth);
 if Depth = 0 then begin
 { final goal proven? }
 writeln;
 writeln(FFactBase.Facts[Goal].Name,’: ’,
 FFactBase.Facts[Goal].Value);
 ShowMessage(FFactBase.Facts[Goal].Name + #13 +
 FFactBase.Facts[Goal].Value)
 end
end;

➤ Listing 15

30 The Delphi Magazine Issue 17

	Facts
	TFactBase
	Rules
	TRuleBase
	Open Tools API
	Property Editors
	TFileName Property Editor
	TFactBase Property Editor
	Component Editors
	TBaseForm
	TFactBaseComponentEditor finally
	TRuleBaseComponentEditor
	Component Bitmaps
	Installation
	Inference Engine
	Backward Chaining
	Certainty Factors
	Conclusion
	Next Time

